和谐英语

您现在的位置是:首页 > 英语阅读 > 英语阅读|英语阅读理解

正文

人工培育肌肉组织研究获重大进展

2014-04-24来源:和谐英语
The group also replicated the work using human muscle stem cells in a dish, though that work hasn't yet been published, according to Dr. Bursac. The researchers are now working on optimizing the growth of human muscle tissue, including finding a way to get blood flow to the tissue, the best source of cells and the best growing medium for the cells.
据布尔萨奇说,团队还利用人类肌肉干细胞在一个培养皿中重复了上述实验,不过实验结果还没有发表。研究人员目前正在着手完善人类肌肉组织的培养,比如想办法让血液流入组织,找到最好的细胞源,以及为细胞寻找最好的生长介质等。

Other scientists, such as Brown's Dr. Vandenburgh, working with David Mooney's team at Harvard University, have made significant strides using a different stem-cell approach, focusing on implanting human stem cells using the right concoction of biological chemicals to stimulate growth.
布朗大学的范登伯格博士等一些科学家则利用不同的干细胞处理方法取得了明显的进展。他们侧重于在植入人类干细胞的时候利用适合的生物化学调和物来刺激生长。范登伯格博士跟哈佛大学(Harvard University)戴维·穆尼(David Mooney)团队一起合作。

Taking biopsies from adult volunteers, including the muscle cells of individuals with congestive heart failure and the frail elderly, and implanting those stem cells into mice, they have been able to demonstrate that they can grow muscle tissue that generates about 90% to 95% of the force of a normally functioning muscle fiber.
他们在成年志愿者身上采集活组织标本(包括充血性心力衰竭患者和体弱老年人身上的肌肉细胞),然后把这些干细胞植入老鼠体内,得以证明他们培育出的肌肉组织大约可以达到机能正常肌肉纤维90%到95%的力量。

Dr. Vandenburgh estimates that the technique could be ready for human clinical trial testing within four to five years. The approach will be best for someone with a specific weakened muscle rather than someone with a disease that causes general muscle wasting, he says.
范登伯格估计,这项技术有望在四五年之内达到做人类临床试验的条件。他说,这一方法将最适合某些肌肉受损的人,而不是身患某种疾病、导致肌肉总体萎缩的人。

Early trials could target drooping eyelids, for example, by injecting the stem cells into the muscle around the eye. The hope would be for the healthy stem cells to migrate to the wounded tissue and regenerate it.
早期试验可能会以下垂的眼睑为目标,比如说向眼部周围的肌肉注入干细胞,希望健康干细胞能够进入受损组织,使之重新生长。

Another challenge to using regenerated muscle for therapeutic purposes is the size of the tissue that can be regenerated, experts say. For instance, the mouse calf muscle generated by the team currently is about 20 millimeters long and 4 to 5 millimeters wide, a fraction of the human calf muscle.
专家说,使用再生肌肉用于治疗目的另一重挑战在于能够再生的组织的大小。比如团队目前培育的老鼠腓肠肌约为20毫米长,4到5毫米宽,只占人类腓肠肌的很小一部分。

Because muscle tissue is very dense, it's difficult to get enough oxygen and blood flow to the muscle on the inside of the tissue, Dr. Bursac says. He and other researchers, such as those at Washington University in St. Louis, are trying to create channels in muscle tissue that can deliver the nutrients the muscle needs.
布尔萨奇说,因为肌肉组织非常紧密,很难让足量的氧和血液流到组织内部的肌肉上去。他和其他研究人员(比如华盛顿大学 路易斯分校(Washington University in St. Louis)的研究人员)正在想办法在肌肉组织中开辟出能够输送肌肉所需营养物质的通道。

If they solve this issue, doctors would be able to grow denser and stronger lab-generated muscle tissue. Resolving the issue of how to vascularize muscle tissue will open doors for the treatment potential of regenerated muscle tissue, Dr. Bursac says.
如果他们解决了这个问题,医生将能够培育出更加紧密、更有力量的实验室肌肉组织。布尔萨奇说,解决了怎样给肌肉组织建造血管的问题,就会为再生肌肉组织的治疗潜能开闸。