和谐英语

您现在的位置是:首页 > 托福考试 > 托福阅读

正文

托福阅读:TPO4(Petroleum Resources)原文及答案

2014-08-26来源:互联网

  新东方托福考试网整理发布托福TPO阅读本文,希望帮助考生对照文本更好的研究真题,充分备考,争取理想成绩,实现留学梦想。

  托福阅读真题:TPO4(Petroleum Resources)原文、翻译、参考答案及答案解析:

  Petroleum Resources

  Petroleum, consisting of crude oil and natural gas, seems to originate from organic matter in marine sediment. Microscopic organisms settle to the seafloor and accumulate in marine mud. The organic matter may partially decompose, using up the dissolved oxygen in the sediment. As soon as the oxygen is gone, decay stops and the remaining organic matter is preserved.

  Continued sedimentation—the process of deposits’ settling on the sea bottom—buries the organic matter and subjects it to higher temperatures and pressures, which convert the organic matter to oil and gas. As muddy sediments are pressed together, the gas and small droplets of oil may be squeezed out of the mud and may move into sandy layers nearby. Over long periods of time (millions of years), accumulations of gas and oil can collect in the sandy layers. Both oil and gas are less dense than water, so they generally tend to rise upward through water-saturated rock and sediment.

  Oil pools are valuable underground accumulations of oil, and oil fields are regions underlain by one or more oil pools. When an oil pool or field has been discovered, wells are drilled into the ground. Permanent towers, called derricks, used to be built to handle the long sections of drilling pipe. Now portable drilling machines are set up and are then dismantled and removed. When the well reaches a pool, oil usually rises up the well because of its density difference with water beneath it or because of the pressure of expanding gas trapped above it. Although this rise of oil is almost always carefully controlled today, spouts of oil, or gushers, were common in the past. Gas pressure gradually dies out, and oil is pumped from the well. Water or steam may be pumped down adjacent wells to help push the oil out. At a refinery, the crude oil from underground is separated into natural gas, gasoline, kerosene, and various oils. Petrochemicals such as dyes, fertilizer, and plastic are also manufactured from the petroleum.

  As oil becomes increasingly difficult to find, the search for it is extended into more-hostile environments. The development of the oil field on the North Slope of Alaska and the construction of the Alaska pipeline are examples of the great expense and difficulty involved in new oil discoveries. Offshore drilling platforms extend the search for oil to the ocean’s continental shelves—those gently sloping submarine regions at the edges of the continents. More than one-quarter of the world’s oil and almost one-fifth of the world’s natural gas come from offshore, even though offshore drilling is six to seven times more expensive than drilling on land. A significant part of this oil and gas comes from under the North Sea between Great Britain and Norway.

  Of course, there is far more oil underground than can be recovered. It may be in a pool too small or too far from a potential market to justify the expense of drilling. Some oil lies under regions where drilling is forbidden, such as national parks or other public lands. Even given the best extraction techniques, only about 30 to 40 percent of the oil in a given pool can be brought to the surface. The rest is far too difficult to extract and has to remain underground.

  Moreover, getting petroleum out of the ground and from under the sea and to the consumer can create environmental problems anywhere along the line. Pipelines carrying oil can be broken by faults or landslides, causing serious oil spills. Spillage from huge oil-carrying cargo ships, called tankers, involved in collisions or accidental groundings (such as the one off Alaska in 1989) can create oil slicks at sea. Offshore platforms may also lose oil, creating oil slicks that drift ashore and foul the beaches, harming the environment. Sometimes, the ground at an oil field may subside as oil is removed. The Wilmington field near Long Beach, California, has subsided nine meters in 50 years; protective barriers have had to be built to prevent seawater from flooding the area. Finally, the refining and burning of petroleum and its products can cause air pollution. Advancing technology and strict laws, however, are helping control some of these adverse environmental effects.

  Paragraph 1: Petroleum, consisting of crude oil and natural gas, seems to originate from organic matter in marine sediment. Microscopic organisms settle to the seafloor and accumulate in marine mud. The organic matter may partially decompose, using up the dissolved oxygen in the sediment. As soon as the oxygen is gone, decay stops and the remaining organic matter is preserved.